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LETTER TO THE EDITOR

New universal spectral correlators

G Akemann† and J Ambjørn
The Niels Bohr Institute, Blegdamsvej 17, DK-2100 Copenhagen Ø, Denmark

Received 22 July 1996

Abstract. We study the universal properties of distributions of eigenvalues of random matrices
in the large-N limit. The distributions fall in universality classes characterized entirely by the
support of the spectral density.

1. The theorems

Random matrices have found a wide range of applications in solid-state physics, nuclear
physics and high-energy physics. An important observable in most of these applications is
the correlator between eigenvalues of the random matrices. In addition to being random,
the matrices are often large, and it is natural to take the so-called large-N limit in many
of the applications. The general set up is as follows: we consider an ensemble of random
matrices

P(φ) = 1

Z
e−N Tr V (φ) Z =

∫
dφ e−N Tr V (φ) V (φ) =

∑
k

gk

k
φk (1)

and in this ensemble we can ask for expectation values of a certain observable:

〈f (φ)〉 =
∫

dφ P (φ) f (φ). (2)

In what follows we will assume that the random matricesφ areN ×N Hermitian matrices,
but similar results can be proved for ensembles of complex matrices.

The one- and two-point ‘resolvents’ are defined by

G(z) = 1

N

〈
Tr

1

z − φ

〉
(3)

G(z1, z2) =
〈
Tr

1

z1 − φ
Tr

1

z2 − φ

〉
−

〈
Tr

1

z1 − φ

〉 〈
Tr

1

z2 − φ

〉
. (4)

They are related to the spectral density and the correlator of densities

ρ(λ) ≡ 〈S(λ)〉 S(λ) ≡ 1

N

N∑
i=1

δ(λ − λi) (5)

and

ρ(λ, λ′) ≡ 〈
S(λ)S(λ′)

〉 − 〈S(λ)〉 〈
S(λ′)

〉
(6)
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in the following way:

ρ(λ) = − 1

2π i
(G(λ + iε) − G(λ − iε)) (7)

and

ρ(λ, λ′) = 1

N2

( −1

2π i

)2

(G(+, +) + G(−, −) − G(+, −) − G(−, +)) (8)

whereG(±, ±) ≡ G(λ ± iε, λ′ ± iε′).
The following theorem was proved in [1] (and partly rediscovered by the authors of [2],

after whom it is sometimes called the Brezin–Zee universality):

Theorem 1.Assume that the spectral densityρ(λ) has support in a single interval in the
large-N limit. Then the two-point correlator (and thusρ(λ, λ′)) is universal, i.e. independent
of V (φ), and given by (in the case of a symmetric potential, such that the support is [−a, a])

G(z1, z2) = 1

4(z1 − z2)2

−2 + (z2
1 − a2) + (z2

2 − a2)√
(z2

1 − a2)(z2
2 − a2)

 − 1

4

1√
(z2

1 − a2)(z2
2 − a2)

. (9)

For the general formula for an arbitrary potential, as well as for complex matrices, rather
than Hermitian matrices, we refer the reader to [1]. In fact much more was proved in [1].
Any multi-point resolvent

G(z1, . . . , zn) ≡ N2n−2

〈
1

N
Tr

1

z1 − φ
· · · 1

N
Tr

1

zn − φ

〉
conn

(10)

where ‘conn’ refers to the connected part of the multi-point resolvent, is also universal.
Closed and very simple expressions were given for the multi-point resolvents in the case
where matrix ensemble consisted of complex matrices. Note that the generalization of (8)
is

〈S(λ1) · · · S(λn)〉conn = 1

N2n−2

( −1

2π i

)n ∑
σk=±1

(−1)6kσkG(z1 + σ1iε, . . . , zn + σniε). (11)

In addition it is possible to develop a systematic 1/N2 expansion:

G(z1, . . . , zn) =
∞∑

h=0

1

N2h
Gh(z1, . . . , zn) (12)

F =
∞∑

h=0

1

N2h
Fh. (13)

Again the two-point resolvents and in this case even the corrections to the spectral density
ρ(λ) as well as the corrections to the free energyN2F = logZ are all universal [3]. These
considerations were later extended to supermatrices [4].

In the above discussion universality means that the resolvents can be presented in a
form independent of the potential. Of course the function (9) depends on the potential
through the endpoints of the eigenvalue distributionρ(λ). The same remark is true for
the multi-point resolvents and for higher-order expansions in 1/N2. However, for then-
point resolvent calculated to non-trivial orderh in the 1/N2 expansion only 2(3h − 2 + n)

additional parametersM(l)

1,2 are involved for an arbitrary potential (see the definition (27)).
Yet some of these might vanish, as will be the case for a Gaussian potential where all but one
of the additional parameters vanish. The somewhat misleading statement found in [2] that
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all multi-point density correlators vanish to order 1/Nn is a trivial fact which follows from
the factorization property of the large-N expansion. The first non-trivial term is of order
1/N2n−2 for the n-point density correlator (11) and it is explicitly non-Gaussian in nature
for n > 2 because of the additional parameters. These observations can be summarized as
follows [3]:

Theorem 2.If the spectral density in the large-N limit has support [−a, a] all higher 1/N2

corrections to the free energyF , to then-point resolvents, to the spectral density and any
multiple eigenvalue correlators are universal. The correction to then-points resolvents are
of the form

Gh(z1, . . . , zn) = Rh

({z2
i − a2}, {M(l)

a }, a)√∏n
i=1(z

2
i − a2)

(14)

where theRh are simple rational functions of the arguments, which can be determined
iteratively in the 1/N2 expansion.

We refer the reader to [3] for details and generalizations to the situation where the
support is not symmetric, and to [5] for complex matrix models.

All these considerations have been based on the assumption thatρ(λ) has support in
one interval on the real axis. More general situations can occur for complicated potentials,
and in fact it is natural for applications in solid-state physics to have such a situation since
the eigenvalues ofφ are viewed as (part of) the eigenvalues of a Hamiltonian which can
have a band structure. In this letter we prove the following:

Theorem 3.Assume that the support of the spectral densityρ(λ) in the large-N limit
consists ofs intervals [x2j , x2j−1], j = 1, . . . , s. The large-N limit of the two-point
resolventsG0(z1, z2) (and therefore the correlators of eigenvalues) fall in universality classes
characterized bys and they depend only on the potentialV through the endpointsxi . For
each s > 1 it is possible to generalize the statements in theorems 1 and 2 concerning
universality.

Let us present here the explicit solution, analogous to (9), in the case where the support
of ρ(λ) consists of two intervals [x4, x3] and [x2, x1], x4 < x3 < x2 < x1, and where, for
simplicity, we assume thatV (φ) is an even function ofφ such thatx4 = −x1 andx3 = −x2.
If we denotex1, x2 by a, b we have

G0(z1, z2) = 1

4(z1 − z2)2

−2 + (z2
1 − a2)(z2

2 − b2) + (z2
1 − b2)(z2

2 − a2)√
(z2

1 − a2)(z2
1 − b2)(z2

2 − a2)(z2
2 − b2)



+ (a + b)2

4

E(k)

K(k)

1√
(z2

1 − a2)(z2
1 − b2)(z2

2 − a2)(z2
2 − b2)

(15)

wherek = 2
√

ab/(a + b), and whereE(k) andK(k) denote the complete elliptic integrals
of first and second kind.

In the next section we will briefly outline how to prove theorem 3.
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2. Proofs

The basic tool for proving the above statements is the loop equation in the following
form [3]:

K̂G(z) = G2(z) + 1

N2
G(z, z). (16)

In this formulaK̂ is a linear operator

(K̂f )(z) ≡
∮

C

dω

2π i

V ′(ω)

z − ω
f (ω) (17)

and the contour encloses all singularities ofG(z), but not z. Note that the supportσ(λ)

of ρ(λ) coincides with the singularities ofG(z). In large-N limit they will be located ats
cuts on the real axis. If thexi , i = 1, . . . , 2s denote the positions of the endpoints of the
cuts (x1 > x2 > · · ·) the solution to (16) in the large-N limit can be written in closed form
since we can discard the term involvingG(z, z). We get

G0(z) = 1

2

∮
C

dω

2π i

V ′(ω)

z − ω

√√√√ 2s∏
i=1

z − xi

ω − xi

. (18)

In addition the endpoints of the cuts are uniquely determined by the fact thatG0(z) ∼ 1/z

for large |z|, and a certain stability requirement [6]. The first requirement leads tos + 1
equations:

1

2

∮
C

dω

2π i

V ′(ω)ωk√∏2s
i=1(ω − xi)

= δk,s k = 0, . . . , s. (19)

If we define the polynomialM(z) by

M(z) =
∮

C∞

dω

2π i

V ′(ω)

(ω − z)

√∏2s
i=1(ω − xi)

(20)

whereC∞ is a contour at infinity in the complex plane, the requirement of stability implies
[7] ∫ x2k

x2k+1

dλ M(λ)

√√√√ 2s∏
i=1

(λ − xi) = 0 k = 1, . . . , s − 1. (21)

It is this kind of boundary condition which leads to the appearance of hyperelliptic integrals
in formulae like (15).

Note that it follows from (18) that the planar limit of the spectral density is

ρ(λ) = 1

2π
|M(λ)|

√√√√−
2s∏

i=1

(λ − xi) λ ∈ σ(λ). (22)

Having obtained the complete solutionG0(z) in the large-N limit one can solve the
loop equation (16) iteratively as an expansion in 1/N2, and at a given orderh it is possible
to construct the multi-point resolventGh(z1, . . . , zn) from Gh(z). The key ingredient in this
construction is the socalledloop insertion operator

d

dV (z)
= −

∑
k

k

zk+1

d

dgk

. (23)
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By definition it follows that†

G(z1, . . . , zn) = d

dV (zn)
· · · d

dV (z1)
F N2F = logZ n > 2. (24)

In particular, we have

G(z1, z2) = d

dV (z2)
G(z1) (25)

which allows us to constructG0(z1, z2) from (18). The steps are in principle elementary, but
a considerable amount of algebra is needed in order to prove thatG0(z1, z2) is universal, and
of the form (15) for the example of two cuts with an even potentialV (z). The details will
be published elsewhere [8]. Let us only mention here that the main complication compared
to the single-cut case (i.e.s = 1) is that the kernel of̂K − 2G0(z) is not zero but given by

Ker(K̂ − 2G0(z)) = Span

 zl√∏2s
i=1(z − xi)

, l = 0, . . . , s − 2

 (26)

after taking into account the asymptotic ofG(z).
The s-cut solution will be characterized by 2s classes of so calledmoments, given by

M
(l)
i = 1

(l − 1)!

dl−1

dλl−1
M(λ)

∣∣∣∣
λ=xi

i = 1, . . . , 2s. (27)

Following the derivation fors = 1, but with considerable algebraic complications, one then
can show by iteration thatGh(z1, . . . , zn) can be written in the form

Gh(z1, . . . , zn) =
Rh

(
{zj − xi}, {M(l)

i }, {xi}
)

√∏2s
i=1

∏n
j=1(zj − xi)

(28)

whereRh is a rational function of the poles and the moments with 16 l 6 3h − 2 + n.
However, contrary to the cases = 1 the coefficients inRh are no longer rational functions
of the xi , but involve hyperelliptic integrals as well.

3. Comments

The universal features of the single-cut solution of the random matrix models generalize
to an arbitrary number of cuts. As was shown in [3, 9, 10] the universality of the one-
cut solution is deeply connected with the theory of intersection indices on the moduli
space of punctured Riemann surfaces. It is unknown if a similar underlying mathematical
structure can be related to the multi-cut solution. The fact the the coefficients in (28) can be
expressed in terms of hyperelliptic integrals gives some hope in this direction, since similar
hyperelliptic integrals are encountered for the random matrix model coupled toO(n) spins
and this model is known to be related to integrable hierarchies.

References

[1] Ambjørn J, Jurkiewicz J and Makeenko Y 1990Phys. Lett.251B 517
[2] Brezin E and Zee A 1993Nucl. Phys.B 402 613
[3] Ambjørn J, Chekhov L, Kristjansen C F and Makeenko Yu 1993Nucl. Phys.B 404 127

† For G(z) 1/z has to be added on the right-hand side.



L560 Letter to the Editor

[4] Plefka J C 1995Nucl. Phys.B 444 333; 448 355
[5] Ambjørn J, Kristjansen C F and Makeenko Yu 1992Mod. Phys. Lett.7A 3187
[6] David F 1991Nucl. Phys.B 348 507
[7] Jurkiewicz J 1990Phys. Lett.245 178
[8] Akemann G 1996 Higher genus correlators for the hermitian matrix model with multiple cutsPreprint

NBI-HE-96-30, IPT-UH-08/96, hep-th/9606004
[9] Chekhov L 1993Geom. Phys.12 153

[10] Chekhov L 1995 Matrix models and geometry of moduli spacesSteklov Mathematical Institute Preprint
hep-th/9509001


